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EFFECTS OF MAG_ETICALLY INDUCED EDDY-CURRENT TORQUES

ON SPIN MOTIONS OF AN _ SATELLITE

By G. Louis Smith

One of the sources of torques on near-earth satellites is the interaction
of the earth's magnetic field with eddy currents induced in the electrically
conducting parts of a spinning satellite. Lnitially, it is assumed that the
geomagnetic field is that of a space-fixed dipole. The equation for the average
torque, due to this effect, acting on a satellite of known properties is derived
and presented. This equation shows the variation of the torque with the orbital
parameters. The TAme history of the spin vector as influenced by this torque
has been investigated. For the ge_.eralcase, the spin vector can be resolved
into three orthogonal components which are damped exponentially at three differ-
ent rates.

'Ineanalysis is extended to include the effect of the tilt of the geomag-
netic dipole axis with respect to the earth's spin axis. The analysis and equa-
tions which include this effect closely parallel the preceding analysis and
equations.

The generalized parameters, which can be used in analyzing the motion due
to eddy currents of any spinning satellite in a near-circular orbit, are pre-

sented in graphical form.

INTRODUCTION

One of the sources of torques on near-earth satellites is the interaction
of the earth's magnetic field with eddy currents induced in the electrically
conducting parts of a spinning satellite. This effect is considered in refer-
ences 1 to 6. The problem consists of two parts: first, the calculation or
measurement of the eddy-current torques on the satellite due to the presence of
a given magnetic field, and second, the calculation of the torques and their
effect on the angular motions of the satellite while in orbit around the earth.

Studies of the first part of the problem are presented in the literature, but
the latter part of the problem is treated only by estimates or else for very
special ccses. Sanduleak (ref. 7) sets up the equations for the spin-damplng
torque, in which the earth's magnetic field and orientation of the spin vector
are considered as variables. Sanduleak programed these equations on an elec-
tronic data processing system for the torque computation, and numerical integra-
tion of the equations of motion yields the spin-rate history. However, only the
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damping component of torque is considered. It is shown by Vinti in reference 4
that there is also a torque component tending to precess the spin vector.

The purpose of this paper is to derive and present expressions for the
average torques due to induced eddy currents acting on a satellite and to study
the re_ulting time history of the spin motion. Examples of application of this
study are the improved estimation of torques acting on a spinning satellite
which must be oriented or for which the spin must be maintained within limits,
and the calculation of the damping of satellite spin for comparison with
observed variations.

SYMBOLS

I _(i)_ square matrix, defined by equation (14)

_ square matrix, defined in equation (4)
I
!

ai coefficient of elgenvector where i = 1,2,3

FBCiI_ square matrlx_ defined by equation (34)
J

[B(il,_)1 square matrix, defined by equation (32)

o,E C4w,,eromjn = 192,,3

det II determinant of matrix

_i eigenvector where i = 1,2,3

-@

H magnetic field vector

Hi component of magnetic field vector where i = x, y, and z

EI_ identity matrix

Imax maximum moment of inertia of satellite

i orbital inclination

--b-_ -@

i ,J,k unit vectors
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K interaction constant (see eq. (I))

k2 earth's gravitation constant

t_rque vector

_I P period of satellite orbit

p semilatus rectum of orbit

Re radius of earth

r geocentric radius

s geomagnetic dipole strength

!-_ ET3 transformation matrix (with subscript)

t time

-@

X coordinate vector

X,Y,Z Cartesian coordinates

x,y,z components along X, Y, Z axes

_jTj8 elements of CA]

c eccentricity

tilt angle of dipole

e true anomaly

argument of perigee

An

_n eigenvalue of E_3 where n = i, 2, 3

angle of earth rotation

v angle from Xm to xE

T time (nondimensional)

X angle from Y-axis to _e2
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satellite longitude

satellite colatitude

spin vector

spin rate

[ ] square matrix

() column matrix

Subscripts:

( )E earth-fixed reference

( )I space-fixed, or inertial, reference

( )M geomagnetic reference

( )o initial condition

r radial direction away from geocenter

direction of increasing

av average or mean value

Dots denote derivatives with respect to time

ANALYSIS

A Cartesian coordlnate system is defined, with the Z-axis along the dipole
axis and the X-axis passing through the ascending node of the intersection of
the orbit plane with the geomagnetic equatorial plane. The Y-axis then completes
the coordinate system, as shown in figure 1. The orbit orientation is described
with respect to this system by the inclination to the geomagnetic equator i
and the argument of the perigee B. The position of the satellite is given by
the orbit angle e or by the lon_tude _ and colatitude _ within the coor-
dinate system.

The torque due to eddy currents acting on a satellite is shown by Vinti
(ref. 4) to be

!

M=K x (1)

i
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where K is a constant for the satellite spinning about a given body axis.

(Small variations of K due to such effects as change of conductivity with
satellite temperature are neglected in this paper.) Equation (i) is rewritten
as

M = K H • _ - H 2

The time required for the spin to decrease to one-half its original value due
to eddy-current torques is in general on the order of a hundred days. (See,
for example, refs. 1 to 3.) Hence, during a day, the change in spin rate is on
the order of 1 percent, and during a single orbit, approximately 2 hours, the
spin vector is very nearly constant. If the spillvector is assumed constant,
the torque may be integrated with respect to time around one orbit, and an

I average torque is thus calculated:

R

fo_v = _ M dt : (3)

where

+ )
[A_ = HyHx -(Hz2 + Hx2) HyHz dt (4)

It is next necessary to evaluate the elements of [A_.

Evaluation of Matrix Elements

The geomagnetic field is assumed to be a dipole field and the tilt of the
axis of the dipole with respect to the spin axis of the earth is neglected;
therefore, the field is not a function of longitude and time. The magnetic
field is thereby a function of the position of the satelllte, which is given by
the classical orbit relations.

The spherical components of a dipole field of strength p are

Hr _ 2s cos _ rSa)
r3

1964009042-008



H# - s sin # (Sb)r3

or, in Cartesian coordinates:

Hx _ sin # cos # cos

Y = S sin _ cos Q sin (6)

cos2_ - i

By orbit mechanics

a_d

P
r = (8)

].+ e cos 9

The angles _ and _ are given b_

cos # = sin i sin(e + _) (9)

and

tan _ : cos i tan(e + _) (lO)

The variable of integration in equation (3) is changed to e_ thus,

6
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Equations (8), (9), and (i0) are used, after extensi_-eman_.pulation,in
equation (6) to express the co_oonents of _ as f&uctions of e and the orbit

parameters p, _, i, and q. These expressions are substituted into equa-
tion (12) aT.-._the integration performed. It is found that terms in_rolving c

and c3 vanish. If the _ualysis is restricted to near-circular orbits, the

terms in c2 and c4 can be neglected, and EA'] is foun@,to be

2_ 2

! where

i.i - -
_ _(i) o o

:_ [A(i)]= o _(i) _(i)
0 5(i) _(i)

L

.q

___o_ o o

= 0 _______oos_+__oo_ __o,_oo_

0 sin3i cos i ig + 2_ cos2i -

(14)

Figure 2 _hows the elements of _(i)_ as a function of inclination i.
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The orbital per">d is replaced by and the c2 term is

K(l- 3/2'
neglected; thusj equation (3) for the a_erage torque due to eddy currents
becomes

p6

This torque can be added to other torques, for example_ those due to grav-

itation gradients# in order to study the motion of a satellite. .:nthe present

paper: however, the only external torque considered is that due to eddy currents.

It is well-known that for spinning satellites, because of internal dissipa-

tion of kinetic energy of rotation, the only stable axis of rotation is the axis

of maximum mcmentum. After the transition to this spin motion is complete, the

angular momentum of the satellite is simply Ima x (_), and the equation of
the

spin motion of the satellite becomes

Imax (&) - p6 ,-

The solution form

Ks2

e Imax'p6'_t

I is substituted into equation (16), from which
I

I
I

or

)o-O
which is simply a matrix eigenvalue problem. Equation (17) has nontrivial

solutions only if

8
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E_- cL-_ 0 0

I[A(i)]- _E_]I-- o _- _. _ =o _8_det

0 5 7 -k,

It is noted that the x-cor.ponent is urlcoupled from the y- a_d z-components_

that is, all terms in the first column and first row vanish, except _ - _, and

_ the problem is simplified considerably. The three solutions of equation (18)
I ;-

. _ are

! # -,

f ,kI =

'| _+7_
k2,3 - 2 + + 62 " _ (19)

__+7

2 i + 52

- The eigenvalues are plotted in figure } as a function of inclination.

components corresponding unit eigenvectors are the minors of
The of the

I the determinant l_(i)_ - k[l]l obtained by moving acros_ a row and normal-
izing and are

9
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orthoKonsl _nd the calculations are simplified considerably. Sinco eI ccin-

cides with the X-axls, e2 and e3 are obtained from j and k by rotating

them through some an61e X as shown In figure 4. Thus

Co)
e__ = _cos

(."l)

_3 = -Sln

COS

Comparlson of equations (20) and (21) shows that

_2-7

This an_le of rotation X Is shown as a function of orbital incll_tion in

figure 9- Final]@, the spin vector may be written as

= alel e + su2e2e + a3ehe (25)
!

[
where

The ai's are the components of _o expresses in the _i system and maybe

written as

i
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i !
0 0 ,C_X, o1

= 0 cos X sin X (_y, (2b)

-@

where ak,o, _,o, and mz, o are the components of ab in the Cartesian

coordinate system.

Thus far, it has been assumed, for simplicity, that the geomagn__tic field

is a dipole with the axis along the earth's spin axis. Consideration is now

given to the effects of the tilt of the diFole axis with respect _o the earth's

spin axis.

I
I

Rot_ting Earth With Tilted Dipole FieldThe geomagnetic field of the earth is approximated by a dipole field, the

! dipole axis being tilted 17° _cith respect to the earth's spin axis. (See

fez. 7.)

In order to include the effect of the tilt of the magnetic dipole field

with respect to the earth's .(;pinaxis, it is necessary to define three coordi-

nate systems. (See fig. 6.) The space-fixed or inertial sy_.tem XI,YI,Z I is

oriented with the Zi-axis along the earth's spin axis, and the Xi-so:is along

the intersection of the satellite orbit plane and the equator so that the

Xl-aXiS passes through the ascending node. The earth-fixed system XE,YE,Z E

is Ol__ented with the ZE-axis along the eal_.h's spin axis and the XE-axis passing

through the intersection of the equator with the geomagnetic equator. Finally,

' the geomagnetic system XM,YM,Z M is defined with the ZM-axis along the axis

of the geomagnetic dipole and the XM-axis passing through the ascending node of

the orbit referenced to the geomagnetic equator. In addition, several angles

are defined: i! denotes the orbital inclination with respect to the earth's

equator and iM the orbital inclination with respect to the geomagnetic equa-

tor, B is the angle between the XI- and XE-axes , w the angle between the

XM- and XE-axes , and finally _ is the tilt of the dipole field with respect

to the earth's spin axis, that is, the angle between ZE and ZM. It is seen

in figure 6 that these angles are all related, in the spherical triangle ABC.

The purpose of each coordinate syste_n is as follows:

The inertial coordinate system provides a necessary fixed reference, as the

other co6rdinate systems rotate with _he earth. The analysis of the previous

section was referenced to the geomagnetic coordinate system. The earth-fixed

11
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system serves as an intermediate coordinate system by which Euler angle rota-

tions are made in transforming from the inertial to the geomagnetic coorlin_te i
system, and is furt.huf necessitated by the requlzcment that d_/dt, which is

the spin rate of ea._th: is constant, i

As is seen from f_.gure 6, the XE,YE,Z E sy3tem is obtained by rutating

the XI,YI,Z I system about the Z-axis through the angle _j or

cos.sin.O
X_ = <YE_ = -sin u cos _ y = (26)

_,e XM,YM,Z M system is next obtained by rotating the XE,YE,ZE system,

flr._.tabout the XE-axis by the tilt ang%e _, and then about the ZM-axis by

the ar.gle _:

cos v -sin v 1 0 0 xE

XM = YM = s!n v cos _ 0 0 cos _ sin _ YE =

0 0 1 0 -sin _ cos _ zE

Equations (26) and (27) yield

xM= XT

The components of the vector in the inertial coordinate system are given in

terms of the components in the geomagnetic coordinate system by simply

reversing the rotations and their order:

I Equation (15) was derived on the assumption of a dipole field constant in
time. As the earth rotates, the geomagnetlc axes also move and therefore equa-

tion (15) does not apply. If the variation of the dipole field is slow,

!
12
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equation (19) may be used as an approximation to the torque. During a single
orbital period of the satellite, the change in the geomagnetic field at a point
is considered to be small.

The follcwing approximations are now made:

(1) Equation (15) is applicable

(2) The summation of angular impulses over i day may be approximated by
integration

(3) The satellite spin vector does not change significantly in 1 day

In order to use equation (15), it is necessary only to reference the
vectors to the geomagnetic coordinate system:

from which

given by

=
geomag-

ira- -- .J

netic coordinate system to the inertial coordinate system. The average daily
torque is thus written as

(_v)I : p6 2_

The matrix [B(II)] whlch now takes the place of [A(IM) ] is

13
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The integration indicated in equation (34) was accomplished numerically. The _|

matrix il, being a similarity trs_Isformof iM , which is symmetric,

is also sy_netric; hence its integral, iI , is symmetric. The b12 and :

bl3 (hence b21 and b31 , by symmetry) terms are found to be only a fraction
of a percent of the larger terms in the matrix, and may be considered to be

negligible. The remaining predominant matrix elements bll , b22 , b33 , and

b23 (=b32) are plotted as functions of ii, the inclination of the orbit plane

to the equator, in figure 7.

Equation (33) can be used to calculate the daily average torque due to
eddy currents on a spinning satellite The time history of the effect of this
torque _an be determined by the same analysis as used in the previous section;

equations (15) to (25) are immediately applicable when the elements of iI

are substituted for the elements of [A(IM)]. The eigenvalues of [B(il)l, AI,

A2, and A 3 are shown in figure 8 as a function of il, and the angle XI

between the eigenvectors of IB(il)l and the space-fixed coordinate axes is
__ ..m

shown in figure 9 also as a function of iI.

Numerical Example

In order to illustrate the application of the theory developed in this
paper, the .in decay cf a typical satelldte is calculated. For the calcula-
tions, the following numbers are used:

Argument of perigee = 142.3c

I = 2.0 x 107 gm-cm2

' 2
K = 50 dyne-cm-sec/gauss

i

p = 1.15Re

iI = 52°

and

s = 0.3131

which is normalized w_th respect to Re3. The spin vector is conslaered to

I

L 14
i
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be tangent,_nitially to the orbit at the perigee, but in opposite direction
from the velocity vector.

i The initial spin vector, expressed in the space-fixed-coordinate system,
! is thusI

sin 142.3° ).6121

ab = ab, -cos 142.3° cos 52° = ab ).487

-cos 142.3° sin 52° ).62_

It is seen from figure 9 that for iI = 52°, XI = 46o; thus, by equation (25)

a2 = 0 cos 460 sin 460 _o = mo .7
:

0 -sin460 cos460_ Lo.o83j

From equation (24),

T 9o (o.315)2= t = 1.06 x lO-7t seconds = 0.916 x lO-2t days

2.0 X 107 (1.19)6

The eigenvalues for iI = 52° are shown by figure 8 to be

kI = 1.26

k2 = 1.94

_3 = 1.14

using equation (21) for the eigenvectors, the equation for the spin vector
eq. (23)) thus becomes

15
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-_ : 0.612 e-O'Ollgt + 0.788 .69 e-O'O141t + 0.083 0.719 e-0"0104t

= e-O'OllSt + 0.5 e"O'O141t + -0.060 e-O'O104t

Loj o
CONCLUDING P_MA_KS

An analysis has been made to determine the average, or net, torques due to
magnetically induced eddy currents, which act on a spinning nes.r-earth satellite.
InitialLy, the earth's magnetic field is assumed to be that of a space-fixed
dipole. An equation for the torque vector, which is a linear function of the
satellite spin vector, is developed, including the orbital parameters. It is
found that the first- _nd third-order terms in eccentricity vanish identically;
second- and fourth-order terms are neglected. The effect of orbital inclination
is given by a matrix functi3n, since in general the torque vector is not par-
allel to the s-in vector.

The time history of the spin vector subject to this torque has been inves- i
tigated. It is found _hat, for the general case, the span vector can be I
resolved into three orthogonal components which are damped exponentially at
three different rates.

The effect of the tilt of the geomagnetic dipole axis with respect to the
earth's spin axis has been considered for both the torque and the resulting
spin history. The analysis and resulting equations closely parallel those of
the foregoing analysis which did not consider this effect. The two analyses,
with and without consideration of the dipole tilt, yield qualitatively similar
results, altho1_h they differ slightly quantitatively, as is to be expected.

The generalized parameters which can be used in analyzing the motion, due
to eddy current torques for any spinning satellite in a near-circular orbit are
presented in graphical form.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., December lO, 1963.
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Figure i.- Cocrdinate systems and symbols used for analysis of nonine]ined dipole. -X'kr plane

is earth equatorial plane r dipole axls is alon6 Z-axis.
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Figure 3.- Eigenvalues of _(1)] matrix as a function of orbital inclination.
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Figure 4.- R,_]ati_n between coordinate systems and eigenvect_rs.
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Figure 6.- Coordin_ : systems used for calculation of torques due to tilted d/pole.
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Figure7.- Elementsof _J [ matrixas t_nctlon iI.
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Figure 9._ Angle X I between eigenvectora a_d coordl_te axeo as function of orbltal

inclination in inertial reference iI.
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